Characteristics of Agricultural Production Structures Determined by Capital Inputs and Productivities in Contemporary China: Based on 2010 Annual Statistical Data at the Provincial Level

Yoshio Kawamura
Mission of the Afrasian Research Centre

Today's globalised world has witnessed astonishing political and economic growth in the regions of Asia and Africa. Such progress has been accompanied, however, with a high frequency of various types of conflicts and disputes. The Afrasian Research Centre aims to build on the achievements of its predecessor, the Afrasian Centre for Peace and Development Studies (ACPDS), by applying its great tradition of research towards Asia with the goal of building a new foundation for interdisciplinary research into multicultural societies in the fields of Immigration Studies, International Relations and Communication Theory. In addition, we seek to clarify the processes through which conflicts are resolved, reconciliation is achieved and multicultural societies are established. Building on the expertise and networks that have been accumulated in Ryukoku University in the past (listed below), we will organise research projects to tackle new and emerging issues in the age of globalisation. We aim to disseminate the results of our research internationally, through academic publications and engagement in public discourse.

1. A Tradition of Religious and Cultural Studies
2. Expertise in Participatory Research/ Inter-Civic Relation Studies
3. Expertise in Asian and Africa Studies
4. Expertise in Communication and Education Studies
5. New Approaches to the Understanding of Other Cultures in Japan
6. Domestic and International Networks with Major Research Institutes
Characteristics of Agricultural Production Structures Determined by Capital Inputs and Productivities in Contemporary China: Based on 2010 Annual Statistical Data at the Provincial Level

Yoshio Kawamura

Working Paper Series
Studies on Multicultural Societies No.6

2012
Characteristics of Agricultural Production Structures
Determined by Capital Inputs and Productivities in Contemporary China:
Based on 2010 Annual Statistical Data at the Provincial Level

Yoshio Kawamura

1. Subject of Study

Economic globalization can have advantageous or adverse effects depending on the fluidity of an industry’s input and output. In agriculture, in which land is the main medium of economic activity, land (input) has no fluidity as a resource and can be procured only at fixed locations. Meanwhile, agricultural products (output) are tradable goods with high fluidity meeting global needs, which transcend borders. In other words, agriculture is an industry whose products are affected by globalization, even though the procurement of its resources is not amenable to globalization. This makes agriculture the least adaptable industry to globalization.

Agriculture’s industrial characteristics derive from its essence, that is, production activities comprising combined factors. Namely, its production activities are restricted by the natural conditions of each region, while natural conditions (meteorological and geographical, as well as water conditions, etc.) and the quality and quantity of natural resources (land, water sources, flora, etc.) are quite unique to each region. In addition, such regional characteristics are further amplified by the region’s producers, that is, the localities and the societies around them. Thus, even if you consider only the production input system, it becomes evident that the quality of, and the means of inputting, land, labor and capital, differ from region to region.

This means it is necessary to clarify the methods of evaluating regional agriculture and establishing its development framework based on the nature of regional characteristics determined by both natural and social environments. Specifically, in the case of China, due to its very large territory and the large amount of natural and social diversity it contains, the need to clarify such methods is great. This paper presents China’s agricultural structure based on regional characteristics determined by both natural and social environments, according to 2010 annual statistical data at the provincial level, not including Beijing, Shanghai, Tianjin.

* Research Fellow, Ryukoku University.
and Chongqing.

2. **Theoretical Framework of Agricultural Development**

It is evident that agriculture, in essence, is an industry characterized by strong regional “uniqueness,” which is influenced by the natural and social environments of the region. Its industrial characteristics derive from its essence, that is, production activities comprising combined factors. Namely, the production activities are restricted by the natural conditions of each region (meteorological and geographical, as well as water conditions, etc.), which, along with the quality and quantity of natural resources (land, water sources, flora, etc.) are quite unique to each region. In addition, such regional characteristics are further amplified by its producers, that is, the localities and the societies around them. Thus, even if you look at only the production input system, it becomes evident that the quality of, and the means of inputting, land, labor and capital, differ from region to region. Jiro Iinuma’s *Nogyo Kakumei Ron* (Agricultural Revolution), a previous research work, aims at categorizing agriculture from this viewpoint.

Figure 1 shows a simplified model of the forming process of regional uniqueness according to different combinations of production elements. Here, different natural and social environmental conditions that demonstrate complicated abmodalities are theoretically dichotomized and simplified into two extreme categories. “Temperate humid regions” and “temperate dry regions” are the categories dichotomized based on natural environments, while “densely populated communities” and “thinly populated communities” are the categories dichotomized based on social environments.

Agriculture in “temperate humid regions” categorized by their natural environments is a regional form of agriculture conducted in natural environments where the harvest per unit land area will decrease if the land is left untouched during the period between seeding and harvesting without receiving labor input such as weeding, since weeds grow rapidly in such hot-humid environments. In these regions, since the increase of labor input per unit land area and the thoroughness of crop growth management directly affects the harvest volume, agriculture necessarily becomes labor-intensive and agricultural growth depends on the improvement of land productivity. Therefore, capital intensification is directed toward the improvement of land productivity, and agriculture in such regions tends to develop into capital-intensive agriculture based on fluid capital such as new species and fertilizers. If labor power is limited, the agriculture will be restricted to relatively small-scale land management.
On the other hand, the agriculture in “temperate dry regions” is a form of agriculture in a natural environment with a dry climate, with relatively fewer weeds, and no clear correlation between labor input during the period between seeding and harvesting and the harvest per land area. In these regions, since a greater area needs to be cultivated by limited labor power within the short period between seeding and harvesting, the agriculture necessarily becomes labor-saving, and agricultural growth depends on the improvement of labor productivity. Therefore, capital intensification is directed toward the improvement of labor productivity, and the agriculture there tends to develop into labor-saving agriculture based on fixed capital such as machinery. Thus, increase in the land management scale necessarily becomes the mechanism of agricultural growth.

“Densely populated communities” in terms of the social environment refer to communities with a very high population density. This high population density causes an excessive labor supply, resulting in low wage levels. Thus, labor-intensive economic growth is a more rational approach in these communities. In terms of agriculture, since increase in the harvest can be achieved by increasing the labor input per unit land area, the agriculture in such communities tends to be labor-saving, and agricultural growth depends on the improvement
of land productivity. Under the conditions of limited land availability and a great population, agriculture is restricted to relatively small-scale land management.

On the other hand, “thinly populated communities” refer to communities with a very low population density. This low population density causes a shortage of labor supply, resulting in high wage levels. Thus, labor-saving economic growth is a more rational approach in these communities. In terms of agriculture, since more land needs to be cultivated given the limited labor force, the agriculture in such communities necessarily becomes labor-saving, and agricultural growth depends on the improvement of labor productivity. Thus, increase in the land management scale necessarily becomes the mechanism of agricultural growth.

In these agricultural categories, the unique form of regional agriculture determined by natural and social environments of “humid region” and “densely-populated community” stands in stark contrast to the unique form of regional agriculture determined by natural and social environments of “dry region” and “thinly-populated community,” with regard to their growth mechanisms. The former regions tend to be directed towards labor-intensive agriculture, whose growth merkmal (feature) is the improvement of land productivity, whereas the latter regions tend to be directed toward labor-saving agriculture, whose growth merkmal is the improvement of labor productivity. Therefore, in terms of capital intensification, the intensification of fluid capital including the technological renovation of labor subjects generates progress in the former regions; on the other hand, the intensification of fixed capital including the technological renovation of labor generates progress in the latter regions. Hence, the key point is that agricultural growth mechanisms differ according to the natural and social environments.

3. Natural and Social Environments

The average annual temperature, temperature range, average annual humidity, humidity range, annual rainfall, and rainfall range were collected as variables of the natural environments. Descriptive statistics analysis and correlation analysis of these six variables are shown in Table 1. This table reveals the following interesting results. Heilongjiang had the lowest average annual temperature of 5.0°C, while Hunan had the highest, 24.3°C. However, the correlation coefficient of the average annual temperature and the temperature range \(r = -0.781 \) shows that the difference in the annual temperature range (the difference between the highest and lowest monthly temperature) tends to be smaller in provinces with higher average annual temperatures, and larger in provinces with lower average annual temperatures. A similar tendency can be seen with humidity. Tibet Autonomous Region had the lowest average humidity of 31.0%, and Hunan Province again had the highest of 81.0%. Once again, the correlation coefficient of the average annual humidity and its range tends to be smaller in provinces with higher average annual humidity, meaning constantly muggy
weather throughout the year, and the difference in the annual humidity range tends to be bigger in provinces with lower average annual humidity, which leads to substantial seasonal fluctuations in humidity. With regards to rainfall, which is directly related to humidity, Table 1 shows that provinces with a lot of rain experience a large amount of annual rainfall and a large seasonal variability in rainfall, whereas provinces with little rain experience a small amount of annual rainfall with little seasonal rainfall variability.

Since the six variables portraying these natural environments were found to be closely related—as shown in Table 2 in the principal component analysis, only one principal component was extracted, and the scores of this principal component were converted into an index as a climate factor. The higher the climate index, the higher the temperature and humidity, the smaller the range (i.e., the difference between the maximum and minimum values), the higher the rainfall, and the larger the range of rainfall. In other words, if the climate index of a certain province is high, this means that its temperature and humidity are high, and it has a lot of rainfall. In addition, this tendency continues throughout the year. Hainan and Fujian are typical examples of high climate index provinces. On the other hand, typical examples of provinces with a low climate index are Heilongjiang and Xinjiang Uighur Autonomous Region.

Figure 2 is a scatter diagram of the correlation \(r = 0.548 \) between the climate index and the population density (log-transformed). Figure 2 show that there exists a certain relationship between the natural environment and the population distribution. In this figure, there are no provinces that are categorized as “humid” and “thinly populated,” while eight provinces are categorized as “humid” and “densely populated,” and six are categorized as “dry” and “thinly populated.”

Table 1: Descriptive Statistics of Climate Variables and Correlations in China (Provincial Level)

<table>
<thead>
<tr>
<th>Units</th>
<th>Frequency</th>
<th>Min.</th>
<th>Max.</th>
<th>Average</th>
<th>SD</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Average annual temperature</td>
<td>°C</td>
<td>27</td>
<td>5.00</td>
<td>24.30</td>
<td>14.2704</td>
<td>5.50942</td>
</tr>
<tr>
<td>2. Temperature range (difference)</td>
<td>°C</td>
<td>27</td>
<td>12.20</td>
<td>39.30</td>
<td>25.7778</td>
<td>6.93083</td>
</tr>
<tr>
<td>3. Average annual humidity</td>
<td>%</td>
<td>27</td>
<td>31.00</td>
<td>81.00</td>
<td>63.6296</td>
<td>11.26652</td>
</tr>
<tr>
<td>4. Humidity range (difference)</td>
<td>%</td>
<td>27</td>
<td>10.00</td>
<td>42.00</td>
<td>26.4815</td>
<td>9.46804</td>
</tr>
<tr>
<td>5. Annual rainfall</td>
<td>mm</td>
<td>27</td>
<td>180.00</td>
<td>2628.20</td>
<td>848.4556</td>
<td>529.33719</td>
</tr>
<tr>
<td>6. Rainfall range (difference)</td>
<td>mm</td>
<td>27</td>
<td>64.60</td>
<td>560.60</td>
<td>202.2963</td>
<td>120.68327</td>
</tr>
</tbody>
</table>

** **Correlation coefficient is significant at the 1% level.
* *Correlation coefficient is significant at the 5% level.
Table 2: Principal Component Analysis

<table>
<thead>
<tr>
<th>Component matrix</th>
<th>Communality (after extraction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Average annual temperature</td>
<td>0.929</td>
</tr>
<tr>
<td>2. Temperature range (difference)</td>
<td>-0.780</td>
</tr>
<tr>
<td>3. Average annual humidity</td>
<td>0.764</td>
</tr>
<tr>
<td>4. Humidity range (difference)</td>
<td>-0.808</td>
</tr>
<tr>
<td>5. Annual rainfall</td>
<td>0.914</td>
</tr>
<tr>
<td>6. Rainfall range (difference)</td>
<td>0.819</td>
</tr>
</tbody>
</table>

Sums of squares of loadings after extraction = 4.212
Variance (%) = 70.205%

Figure 2: Scatter Diagram of Climate Index and Population Density

This analysis uses land-labor ratios instead of population densities, after confirming the relationship between natural environments and population distributions. The log-translated correlation coefficient ($r = -0.978$) of these factors shows them to be oriented in opposite directions, but nevertheless, they can in effect be handled as almost the same variable.
Namely, it is certain that the land-labor ratio (the land area cultivated by one agricultural worker) is low in densely populated provinces, and high in thinly populated provinces. Jiangsu has the highest population density of 7.24 persons/ha, but it has the 3rd lowest land-labor ratio of 0.75 ha/person. Henan has the lowest land-labor ratio of 0.44 ha/person, and has the 3rd highest population density of 5.73 persons/ha. Meanwhile, Tibet Autonomous Region has the lowest population density of 0.44 ha/persons and the highest land-labor ratio of 84.17 ha/person. In other words, Jiangsu is 362 times as densely populated as Tibet Autonomous Region, while the latter has 112 times more agricultural land than the former on average.

4. Relationship between the Natural and Social Environments and Agricultural Investment

In this paper, the relationship between the agricultural capital input and the distributed structures of the natural and social environments, as well as the direct influence of the agricultural capital input upon agricultural productivity are measured. Here, the formation of agricultural capital input, categorized into two groups, the input of fixed capital (machinery, etc.) and the input of fluid capital (fertilizers, agricultural chemicals, etc.) are measured using the two indexes of the capital equipment ratio (investment per agricultural worker) and the capital input ratio (capital input per agricultural land unit) respectively.

Table 3 shows the correlations of these four agricultural investment indexes. These correlations indicate that agricultural investment in China can be represented along two axes. One is the axis of “fixed capital equipment ratio—fluid capital equipment ratio—fixed capital input ratio”; the other is the axis of “fluid capital input ratio—fixed capital input ratio—fluid capital equipment ratio.” The first axis shows that the level of capital input (fixed capital and fluid capital) to the average agricultural worker is related to the fixed capital input to agricultural land, whereas the second axis shows that the ratio of the capital input (fixed capital and fluid capital) to agricultural land is related to the fluid capital input to the average agricultural worker. Besides, it is noteworthy that these two axes do not function independently, but the fluid capital equipment ratio and the fixed capital input ratio serve as common denominators of these two axes.

Figure 3 shows the results of path analysis (standardized regression analysis), which tested the relationship between these capital investments and the natural and social environments mentioned above. The results indicate the following three points.

(1) The social environment (land-labor ratio) has a direct influence on the capital input ratio (investment in land units), but no significant direct influence on the capital
equipment ratio (investment in labor units) is observed. Provinces with a low land-labor ratio—or densely populated regions—are characterized by large capital inputs (both fixed and fluid capital). On the contrary, the provinces with a high land-labor ratio—or thinly populated regions—have small inputs of fixed and fluid capital.

(2) Only the fixed capital equipment ratio, or the fixed capital input to labor units, has a direct influence on the natural environment (climate factor), but does not have an influence on the fluid capital equipment ratio. In addition, it does not have a direct influence on the fixed capital input ratio or the fluid capital input ratio. In other words, dry provinces have a large fixed capital input, while humid provinces have a relatively low fixed capital input to labor units. This may be indicative of the progress of agricultural mechanization in the former provinces.

(3) The fixed capital input ratio and the fluid capital input ratio, which indicate the capital investment in the land, are strongly correlated. This correlation is strongly related to the fluid capital equipment ratio, which shows the fluid capital input to the labor power; however, no significant relationship with the fixed capital equipment ratio is observed. In other words, the fixed capital equipment ratio has a relatively strong correlation with the fluid capital equipment ratio, but does not have a significant correlation with, or is independent of, other capital input.

Table 3: Correlation between Capital Inputs and Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Frequency</th>
<th>Min.</th>
<th>Max.</th>
<th>Average</th>
<th>SD</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fixed capital equipment ratio</td>
<td>10,000 kw/10,000 persons</td>
<td>27</td>
<td>1.29</td>
<td>6.65</td>
<td>3.2552</td>
<td>1.43732</td>
<td>1</td>
</tr>
<tr>
<td>2. Fluid capital equipment ratio</td>
<td>10,000 t/10,000 persons</td>
<td>27</td>
<td>0.05</td>
<td>0.38</td>
<td>0.1974</td>
<td>0.09223</td>
<td>0.464* 1</td>
</tr>
<tr>
<td>3. Fixed capital input ratio</td>
<td>10,000 kw/10,000 ha</td>
<td>27</td>
<td>0.05</td>
<td>9.58</td>
<td>2.3547</td>
<td>2.52731</td>
<td>0.510** 0.252 1</td>
</tr>
<tr>
<td>4. Fluid capital input ratio</td>
<td>10,000 t/10,000 ha</td>
<td>27</td>
<td>0.00</td>
<td>0.51</td>
<td>0.1442</td>
<td>0.13951</td>
<td>0.268 0.414* 0.875** 1</td>
</tr>
<tr>
<td>5. Land productivity</td>
<td>100 million yuan/10,000 ha</td>
<td>27</td>
<td>0.01</td>
<td>5.68</td>
<td>1.6332</td>
<td>1.47434</td>
<td>0.242 0.357 0.846** 0.933** 1</td>
</tr>
<tr>
<td>6. Labor productivity</td>
<td>100 million yuan/10,000 persons</td>
<td>27</td>
<td>0.72</td>
<td>4.25</td>
<td>2.2344</td>
<td>0.94073</td>
<td>0.333 0.747** 0.240 0.371 0.534** 1</td>
</tr>
</tbody>
</table>

** Coefficient is significant at the 1% level.
* Coefficient is significant at the 5% level.
Figure 3: The Structure of Agricultural Productivity in 2010 China (Path Analysis)

5. Agricultural Investment and Agricultural Productivity

The above Table 3 clearly shows the relationship between capital input and productivity. Before examining this relationship, attention should be paid to the productivity figures. As for land productivity, Tibet Autonomous Region has the lowest value of 100 yuan/ha, while Jiangsu has the highest of 56,800 yuan/ha. The difference between these values is huge: the highest being 568 times the lowest. As for labor productivity, Guizhou has the lowest value of 7,200 yuan/person, while Jiangsu again has the highest of 42,500 yuan/person. Thus the highest value is 5.9 times the lowest. This difference is smaller than that with regard to land productivity. There is a relatively strong correlation ($r = 0.534$) between land productivity and labor productivity, and provinces with a high land productivity tend to have a high labor productivity, while provinces with a low land productivity tend to have a low labor productivity. In this regard, the results of the descriptive statistics show that the difference is
remarkable in the case of land productivity.

More importantly, land productivity, which shows great differences, has a very strong correlation with the level of capital input to land units, that is, the fluid capital input ratio \(r = 0.933 \) and the fixed capital input ratio \(r = 0.846 \); however, significant correlation between land productivity and the level of capital input to labor units (the fixed capital equipment ratio and the fluid capital equipment ratio) cannot be observed. On the other hand, labor productivity strongly correlates with only the fluid capital ratio \(r = 0.747 \), and does not have a significant correlation with the fixed capital equipment ratio. Theoretically, the level of fixed capital input to labor units, that is, the fixed capital equipment ratio, is important as a factor exerting a direct influence upon the improvement in labor productivity. This is true with indexes that indicate mechanization. However, in reality, the level of fluid capital input to labor units, not the level of the fixed capital input to labor units, determines the labor productivity. This shows the characteristics of agricultural investment in contemporary China.

Figure 3, which measures the direct influence of agricultural investment upon agricultural land and labor productivity, shows the following two points.

1. Land productivity is strongly determined by the fluid capital input ratio, which strongly correlates with the fixed capital input ratio. In other words, land productivity is strongly and directly affected by the fluid capital input per land unit. This phenomenon shows that land productivity correlates with the fixed capital input per land unit. On the other hand, no statistically significant direct influence of the capital equipment ratio (fixed capital and fluid capital), which shows the capital investment in labor power, upon land productivity is observed.

2. Compared with land productivity, labor productivity is relatively less affected by capital investment. The fluid capital equipment ratio is the only element that has a direct influence upon labor productivity, and high labor productivity is achieved in provinces with a high fluid capital equipment ratio, which shows the fluid capital input per unit of labor power. However, the fixed capital equipment ratio does not determine labor productivity. In other words, this indicates that contemporary China is not at a stage where the investment in machinery, etc., serves to improve labor productivity, but rather in a situation where investment in fluid capital such as fertilizers and agricultural chemicals boosts labor productivity. \(R^2 \) of the land productivity is 0.866, demonstrating almost complete interpretability, whereas \(R^2 \) of the labor productivity is 0.540, demonstrating relatively weak interpretability. These indicate that the axis of agricultural growth in contemporary China is the improvement of land productivity by inputting mainly fluid capital such as fertilizers.
and agricultural chemicals, which results in the improvement of labor productivity, rather than the improvement of labor productivity by directly inputting mainly fixed capital such as machinery.

6. Development Direction in Agricultural Productivity

Figure 4 shows the changes in land productivity and labor productivity from 2005 (2004) to 2010 (2009) in 27 provinces. In these 27 provinces, in 2005, the average land productivity was 9,900 yuan/ha, and the average labor productivity was 12,300 yuan/person; and in 2010, the average land productivity was 16,300 yuan/ha, and the average labor productivity was 22,300 yuan/person. Therefore the nominal growth rates were 1.71 in land productivity and 1.83 in labor productivity. Since the price index increased by 1.18 during this period, the real growth rates were 1.45 and 1.55 respectively.

In Figure 4, the line which connects the intersections of the average land productivity and the average labor productivity for 2005 and 2010 shows the agricultural progressive trend line of the whole of China determined by both of these productivities. If a line connecting the average intersections for 2005 and 2010 for each province represents the agricultural progressive trend line of the province, a province whose agricultural progressive trend line lies on the X-axis (land productivity axis) side of the overall agricultural progressive trend line with a gentler slope than that of the overall agricultural progressive trend line is achieving land-productivity-oriented growth, whereas a province whose agricultural progressive trend line is located on the Y-axis (labor productivity axis) side of the overall agricultural progressive trend line with a steeper slope than that of the overall agricultural progressive trend line is achieving labor-productivity-oriented agricultural growth.

In Figure 4, Jiangsu, Shandong, and Henan are as typical provinces that have sought land-productivity-oriented agricultural growth. In Jiangsu, in 2005, land productivity was 35,600 yuan/ha and labor productivity was 21,000 yuan/person; in 2010, land productivity was 56,800 yuan/ha and labor productivity was 42,500 yuan/person. The nominal growth of land productivity was 1.60 (real growth, 1.36) whereas the nominal growth of labor productivity was 2.02 (real growth, 1.71). The increase rate of land productivity was a little lower than the average for the 27 provinces, and the increase rate of labor productivity is a little higher than the average. Nevertheless, since both the land productivity and the labor productivity are at high levels, the slope of the agricultural progressive trend line is steep. This steep slope, compared with the average agricultural progressive trend line determined by the 2005 to 2010 average, shows an orientation to land productivity rather than labor productivity, which shows that the province has taken the land-productivity-oriented agricultural growth route. The same trend can be seen in two other provinces, Shandong and Henan. This land-productivity-improvement-oriented trend accompanied by an improvement
in labor productivity reflects the growth axis of Chinese agriculture, which aims at the improvement of capital input centered on such fluid capital as fertilizers and agricultural chemicals, rather than the improvement of labor productivity by directly inputting fixed capital such as machinery.

However, Figure 4 also shows that there are provinces that obviously deviate from the general growth trend of Chinese agriculture. In other words, at least four provinces, namely Inner Mongolia Autonomous Region, Jilin, Heilongjiang, and Xinjiang Uighur Autonomous Region, are seen to have developed an agricultural growth pattern that is clearly labor-productivity oriented. For example, the land productivity of Inner Mongolia in 2005 was 900 yuan/ha, while its labor productivity was 15,300 yuan/person; in 2010, its land productivity was 1,600 yuan/ha and its labor productivity was 28,100 yuan/person. Its nominal growth of land productivity was 1.78 (real growth 1.51), whereas the nominal growth of labor productivity was 1.84 (real growth 1.56), which shows an increasing tendency similar to that of the average of the 27 provinces. However, since the land productivity itself is at a low level, its agricultural progressive trend line has an almost vertical slope, which shows that it has taken the labor-productivity-oriented agricultural growth route. The other three provinces mentioned show almost the same tendency.

Figure 4: Scatter Diagram of Land Productivity and Labor Productivity (2005 - 2010)
The point is, all the provinces that take the labor-productivity-oriented agricultural growth route belong to the category determined by the respective natural and social environments of “dry region” and “thinly-populated community.” It is necessary to recognize that the growth mechanism in these areas is probably different from the growth mechanism developed in areas determined by the respective natural and social environments of “humid region” and “densely-populated community.” Most probably, these provinces have an agricultural growth mechanism that differs from the agricultural growth whose axis is the improvement of the land productivity based on fluid capital input, but aims at the improvement of labor productivity by directly inputting fixed capital. The important point is, the agricultural growth mechanism differs from region to region according to their natural and social environments.
References

Working Paper Series

Peace and Development Studies (Phase1)

No.1 (2005)

No.2 (2005)
K. Palanisami, Sustainable Management of Tank Irrigation Systems in South India

No.3 (2006)
Nobuko Nagasaki, Satyagraha as a Non-violent Means of Conflict Resolution

No.4 (2006)
Yoshio Kawamura and Zhan Jin, WTO/FTA and the Issues of Regional Disparity

No.5 (2006)
Shin’ichi Takeuchi, Political Liberalization or Armed Conflicts? Political Changes in Post-Cold War Africa

No.6 (2006)
Daniel C. Bach, Regional Governance and State Reconstruction in Africa

No.7 (2006)
Eghosa E. Osaghae, Ethnicity and the State in Africa

No.8 (2006)
Kazu Takahashi, The Kurdish Situation in Iraq

No.9 (2006)
Kaoru Sugihara, East Asia, Middle East and the World Economy: Further Notes on the Oil Triangle

No.10 (2006)
Kosuke Shimizu, Discourses of Leadership and Japanese Political Economy: Three Phallus-centrists

No.11 (2006)
Nao Sato, The Composition and Job Structure of Female-Headed Households: A Case Study of a Rural Village in Siemreap Province, Cambodia

No.12 (2006)
Takuya Misu, The United States and the United Nations Operation in the Congo (ONUC)

No.13 (2006)
Om Prakash, Asia and the Rise of the Early Modern World Economy

No.14 (2006)
Takehiko Ochiai, Regional Security in Africa

No.15 (2006)
Masahisa Kawabata, An Overview of the Debate on the African State

No.16 (2006)
Kazu Takahashi, The Middle East, the Middle Kingdom and Japan
No.17 (2006)
Tomoya Suzuki, Macroeconomic Impacts of Terrorism: Evidence from Indonesia in the Post-Suharto Era

No.18 (2007)
Kenichi Matsui, International Energy Regime: Role of Knowledge and Energy and Climate Change Issues

No.19 (2007)
Kazuo Takahashi, Not the Most Popular Decision: Japan’s Ground Self Defense Force Goes to Iraq

No.20 (2007)
Shinya Ishizaka, Leader-Follower Relations in the Foot Marches in Gandhian Environmental Movements in India

No.21 (2007)
Yoshio Kawamura, Participatory Community Development and a Role of Social Statistical Analysis: Case of the JICA-Indonesia Project—Takalar Model

No.22 (2007)
Takashi Inoguchi, The Place of the United States in the Triangle of Japan, China and India

No.23 (forthcoming)
Kosuke Shimizu, Asian Regionalism and Japan’s Unforgettable Past

No.24 (2007)

No.25 (2007)
François Debrix, The Hegemony of Tabloid Geopolitics: How America and the West Cannot Think International Relations beyond Conflict, Identity, and Cultural Imposition

No.26 (2007)
Naomi Hosoda, The Social Process of Migration from the Eastern Visayas to Manila

No.27 (2007)
Chizuko Sato, Forced Removals, Land Struggles and Restoration of Land in South Africa: A Case of Roosboom

No.28 (2007)
Michael Furmanovsky, Reconciliation, Restitution and Healing: The Role of Vietnam Veterans in Facilitating a New Era in U.S.-Vietnam Relations, 1985-2005

No.29 (2007)
Hiroyuki Torigoe, Land Ownership for the Preservation of Environment and Livelihood

No.30 (2007)
Kokki Goto (Edited, Annotated, and with an Introduction by Motoko Shimagami), Iriai Forests Have Sustained the Livelihood and Autonomy of Villagers: Experience of Commons in Ishimushiro Hamlet in Northeastern Japan

No.31 (2007)
Kazuo Kobayashi, The “Invention of Tradition” in Java under the Japanese Occupation: The Tonarigumi System and Gotong Royon
No.32 (2007)
Benedict Anderson, *Useful or Useless Relics: Today’s Strange Monarchies* (加藤 剛訳『有用な遺制か無用な遺物？現代における君主制という不思議な存在』)

No.33 (2008)
Pauline Kent, *The Chrysanthemum and the Sword: The Use of Radical Comparisons to Enhance Mutual Understanding*

No.34 (2008)
Naomi Hosoda, *Towards a Cultural Interpretation of Migration in the Philippines: Focusing on Value-Rationality and Capitalism*

No.35 (2008)
Anan Ganjanapan, *Multiplicity of Community Forestry as Knowledge Space in the Northern Thai Highlands*

No.36 (2008)
Shinji Suzuki, *The Increasing Enclosure of Mangrove Wetlands: Towards Resource Management in Development Frontiers*

No.37 (2008)
Akiko Watanabe, *Migration and Mosques: The Evolution and Transformation of Muslim Communities in Manila, the Philippines*

No.38 (2009)
Acharawan Isarangkura Na Ayuthaya and Senjo Nakai, *The Emergence and Development of Interfaith Cooperation: A Case Study of the Theravada Buddhist Advocacy for People Living with HIV/AIDS (PWA) in Upper Northern Thailand*

No.39 (2009)
Jeremy Rappleye, *Decline of the Tokyo Technocrats in Educational Policy Formation? Exploring the Loss of Ministry Autonomy and Recent Policy Trends with Reference to ‘Globalisation’ and Educational Transfer*

No.40 (2009)

No.41 (2009)
Takehiko Ochiai, *Personal Rule in Nigeria*

No.42 (2009)
Toru Sagawa, *Why Do People “Renounce War”? The War Experience of the Daasanach of the Conflict-ridden Region of Northeast Africa*

No.43 (2009)
Aysun Uyar, *Political Configuration of Thailand’s Free Trade Agreements within the Framework of Southeast Asian Regional Economic Cooperation*

No.44 (2009)
Kosuke Shimizu, *Nishida Kitaro and Japan’s Interwar Foreign Policy: War Involvement and Culturalist Political Discourse*

No.45 (2009)
No.46 (2009)
Motoko Shimagami, An Iriai Interchange Linking Japan and Indonesia: An Experiment in Practical Collaborative Research leading toward Community-Based Forest Management

No.47 (2009)
Nakamura Hisashi, Social Development and Conflict Resolution; as Seen by an Unorthodox Economist

No.48 (2009)
Tomoko Matsui, The Narrative Strategies and Multilayered Realities of Returnee Workers: A Case Study of Thai Returnee Workers from Japan

No.49 (2009)
Yoshio Kawamura, Framework on Socio-economic Mechanism of Emigration in the Pre-war Japan

No.50 (2009)
Yoshio Kawamura, Socioeconomic Factor Structure of Japanese Emigrant Communities: A Statistical Case Study at Inukami County, Shiga Prefecture, in the Meiji Era

No.51 (2009)
David Blake Willis, A Nation at Risk, A Nation in Need of Dialogue: Citizenship, Denizenship, and Beyond in Japanese Education

No.52 (2009)
Shinya Ishizaka, Non-violent Means of Conflict Resolution in the Chipko (Forest Protection) Movement in India

No.53 (2009)
Shinji Suzuki, Illegal Logging in Southeast Asia

No.54 (2009)
Fuping Li, The Current Issues and Development Process of Poverty in China

No.55 (2009)
Shin’ichi Takeuchi, Conflict and Land Tenure in Rwanda

No.56 (2009)
Katsumi Ishizuka, The Impact of UN Peace-building Efforts on the Justice System of Timor-Leste: Western versus Traditional Cultures

No.57 (2009)
Kazuo Funahashi, Changes in Income among Peasants in Northeast Thailand: Poverty Reduction Seen Through a Panel Analysis

No.58 (2009)
Kazue Demachi, Japanese Foreign Assistance to Africa: Aid and Trade

No.59 (2009)
Akio Nishiura, Determinants of South African Outward Direct Investment in Africa

No.60 (2009)
Ryosuke Sato, Discontinuity of International Law with the ‘National Reconciliation’ Process — An analysis of the transitional ‘amnesty’ mechanism of the Truth and Reconciliation Commission in South Africa —
No.61 (2009)
Kazuya Masuda, *The Reconstitution of Adat in a Dual Level Land Conflict: A case study of a village community under forest development schemes in Sumatra, Indonesia*

No.62 (2009)
Kyoko Cross, *Harmonizing Local with Global Justice: Emergence of a Hybrid Institutional Mechanism for Reconciliation in East Timor*

No.63 (2009)
Tomoaki Ueda, *Institution and Ideal in Indian Nationalist Thoughts: G. K. Gokhale in Comparison with M. K. Gandhi*

No.64 (2010)
William Bradley, *Educational Policy in 21st Century Japan: Neoliberalism and Beyond?*

No.65 (2010)
Kosuke Shimizu, *Structural Violence and Human Security*

No.66 (2010)
Misa Shojiya, *Democratization in Divided Society – Outcomes and Issues in International Assistance –*

Studies on Multicultural Societies (Phase2)

No.1 (2012)

No.2 (2012)
Reiko Karatani, *Unravelling the Security and Insecurity of Female Overseas Domestic Workers: ‘Global Householding’ and ‘Global De-Householding’ Examined*

No.3 (2012)
Katsumi Ishizuka, *Japan’s Policy toward s the War on Terror in Afghanistan*

No.4 (2012)
Soo im Lee, *Japanese Learners’ Underlying Beliefs Affecting Foreign Language Leaners’ Motivation: New Perspectives of Affective Factors Mechanism*

No.5 (2012)
Kelvin Chi-Kin Cheung, *Historicizing Taiwan’s Democracy: Recovering the Identity Politics Behind the New Civic Nation in Taiwan*

No.6 (2012)
Kawamura Yoshio, *Characteristics of Agricultural Production Structures Determined by Capital Inputs and Productivities in Contemporary China: Based on 2010 Annual Statistical Data at the Provincial Level*